Metamath Proof Explorer


Theorem csbfv2g

Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbfv2g ACA/xFB=FA/xB

Proof

Step Hyp Ref Expression
1 csbfv12 A/xFB=A/xFA/xB
2 csbconstg ACA/xF=F
3 2 fveq1d ACA/xFA/xB=FA/xB
4 1 3 eqtrid ACA/xFB=FA/xB