Metamath Proof Explorer


Theorem afv2eq2

Description: Equality theorem for function value, analogous to fveq2 . (Contributed by AV, 4-Sep-2022)

Ref Expression
Assertion afv2eq2
|- ( A = B -> ( F '''' A ) = ( F '''' B ) )

Proof

Step Hyp Ref Expression
1 eqidd
 |-  ( A = B -> F = F )
2 id
 |-  ( A = B -> A = B )
3 1 2 afv2eq12d
 |-  ( A = B -> ( F '''' A ) = ( F '''' B ) )