| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin1a2lem.b |
⊢ 𝐸 = ( 𝑥 ∈ ω ↦ ( 2o ·o 𝑥 ) ) |
| 2 |
|
nneob |
⊢ ( 𝐴 ∈ ω → ( ∃ 𝑎 ∈ ω 𝐴 = ( 2o ·o 𝑎 ) ↔ ¬ ∃ 𝑎 ∈ ω suc 𝐴 = ( 2o ·o 𝑎 ) ) ) |
| 3 |
1
|
fin1a2lem4 |
⊢ 𝐸 : ω –1-1→ ω |
| 4 |
|
f1fn |
⊢ ( 𝐸 : ω –1-1→ ω → 𝐸 Fn ω ) |
| 5 |
3 4
|
ax-mp |
⊢ 𝐸 Fn ω |
| 6 |
|
fvelrnb |
⊢ ( 𝐸 Fn ω → ( 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = 𝐴 ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = 𝐴 ) |
| 8 |
|
eqcom |
⊢ ( ( 𝐸 ‘ 𝑎 ) = 𝐴 ↔ 𝐴 = ( 𝐸 ‘ 𝑎 ) ) |
| 9 |
1
|
fin1a2lem3 |
⊢ ( 𝑎 ∈ ω → ( 𝐸 ‘ 𝑎 ) = ( 2o ·o 𝑎 ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝑎 ∈ ω → ( 𝐴 = ( 𝐸 ‘ 𝑎 ) ↔ 𝐴 = ( 2o ·o 𝑎 ) ) ) |
| 11 |
8 10
|
bitrid |
⊢ ( 𝑎 ∈ ω → ( ( 𝐸 ‘ 𝑎 ) = 𝐴 ↔ 𝐴 = ( 2o ·o 𝑎 ) ) ) |
| 12 |
11
|
rexbiia |
⊢ ( ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = 𝐴 ↔ ∃ 𝑎 ∈ ω 𝐴 = ( 2o ·o 𝑎 ) ) |
| 13 |
7 12
|
bitri |
⊢ ( 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω 𝐴 = ( 2o ·o 𝑎 ) ) |
| 14 |
|
fvelrnb |
⊢ ( 𝐸 Fn ω → ( suc 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ) ) |
| 15 |
5 14
|
ax-mp |
⊢ ( suc 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ) |
| 16 |
|
eqcom |
⊢ ( ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ↔ suc 𝐴 = ( 𝐸 ‘ 𝑎 ) ) |
| 17 |
9
|
eqeq2d |
⊢ ( 𝑎 ∈ ω → ( suc 𝐴 = ( 𝐸 ‘ 𝑎 ) ↔ suc 𝐴 = ( 2o ·o 𝑎 ) ) ) |
| 18 |
16 17
|
bitrid |
⊢ ( 𝑎 ∈ ω → ( ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ↔ suc 𝐴 = ( 2o ·o 𝑎 ) ) ) |
| 19 |
18
|
rexbiia |
⊢ ( ∃ 𝑎 ∈ ω ( 𝐸 ‘ 𝑎 ) = suc 𝐴 ↔ ∃ 𝑎 ∈ ω suc 𝐴 = ( 2o ·o 𝑎 ) ) |
| 20 |
15 19
|
bitri |
⊢ ( suc 𝐴 ∈ ran 𝐸 ↔ ∃ 𝑎 ∈ ω suc 𝐴 = ( 2o ·o 𝑎 ) ) |
| 21 |
20
|
notbii |
⊢ ( ¬ suc 𝐴 ∈ ran 𝐸 ↔ ¬ ∃ 𝑎 ∈ ω suc 𝐴 = ( 2o ·o 𝑎 ) ) |
| 22 |
2 13 21
|
3bitr4g |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸 ) ) |