Description: The finite ordinals are closed under the add one operation. (Contributed by RP, 27-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | finona1cl | ⊢ ( 𝑁 ∈ ( On ∩ Fin ) → ( 𝑁 +o 1o ) ∈ ( On ∩ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn | ⊢ 1o ∈ ω | |
| 2 | nnacl | ⊢ ( ( 𝑁 ∈ ω ∧ 1o ∈ ω ) → ( 𝑁 +o 1o ) ∈ ω ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑁 ∈ ω → ( 𝑁 +o 1o ) ∈ ω ) |
| 4 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 5 | 4 | eleq2i | ⊢ ( 𝑁 ∈ ω ↔ 𝑁 ∈ ( On ∩ Fin ) ) |
| 6 | 4 | eleq2i | ⊢ ( ( 𝑁 +o 1o ) ∈ ω ↔ ( 𝑁 +o 1o ) ∈ ( On ∩ Fin ) ) |
| 7 | 3 5 6 | 3imtr3i | ⊢ ( 𝑁 ∈ ( On ∩ Fin ) → ( 𝑁 +o 1o ) ∈ ( On ∩ Fin ) ) |