Metamath Proof Explorer


Theorem finona1cl

Description: The finite ordinals are closed under the add one operation. (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion finona1cl ( 𝑁 ∈ ( On ∩ Fin ) → ( 𝑁 +o 1o ) ∈ ( On ∩ Fin ) )

Proof

Step Hyp Ref Expression
1 1onn 1o ∈ ω
2 nnacl ( ( 𝑁 ∈ ω ∧ 1o ∈ ω ) → ( 𝑁 +o 1o ) ∈ ω )
3 1 2 mpan2 ( 𝑁 ∈ ω → ( 𝑁 +o 1o ) ∈ ω )
4 onfin2 ω = ( On ∩ Fin )
5 4 eleq2i ( 𝑁 ∈ ω ↔ 𝑁 ∈ ( On ∩ Fin ) )
6 4 eleq2i ( ( 𝑁 +o 1o ) ∈ ω ↔ ( 𝑁 +o 1o ) ∈ ( On ∩ Fin ) )
7 3 5 6 3imtr3i ( 𝑁 ∈ ( On ∩ Fin ) → ( 𝑁 +o 1o ) ∈ ( On ∩ Fin ) )