Metamath Proof Explorer


Theorem finona1cl

Description: The finite ordinals are closed under the add one operation. (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion finona1cl
|- ( N e. ( On i^i Fin ) -> ( N +o 1o ) e. ( On i^i Fin ) )

Proof

Step Hyp Ref Expression
1 1onn
 |-  1o e. _om
2 nnacl
 |-  ( ( N e. _om /\ 1o e. _om ) -> ( N +o 1o ) e. _om )
3 1 2 mpan2
 |-  ( N e. _om -> ( N +o 1o ) e. _om )
4 onfin2
 |-  _om = ( On i^i Fin )
5 4 eleq2i
 |-  ( N e. _om <-> N e. ( On i^i Fin ) )
6 4 eleq2i
 |-  ( ( N +o 1o ) e. _om <-> ( N +o 1o ) e. ( On i^i Fin ) )
7 3 5 6 3imtr3i
 |-  ( N e. ( On i^i Fin ) -> ( N +o 1o ) e. ( On i^i Fin ) )