Description: The finite ordinals are closed under the add one operation. (Contributed by RP, 27-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | finona1cl | |- ( N e. ( On i^i Fin ) -> ( N +o 1o ) e. ( On i^i Fin ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn | |- 1o e. _om |
|
2 | nnacl | |- ( ( N e. _om /\ 1o e. _om ) -> ( N +o 1o ) e. _om ) |
|
3 | 1 2 | mpan2 | |- ( N e. _om -> ( N +o 1o ) e. _om ) |
4 | onfin2 | |- _om = ( On i^i Fin ) |
|
5 | 4 | eleq2i | |- ( N e. _om <-> N e. ( On i^i Fin ) ) |
6 | 4 | eleq2i | |- ( ( N +o 1o ) e. _om <-> ( N +o 1o ) e. ( On i^i Fin ) ) |
7 | 3 5 6 | 3imtr3i | |- ( N e. ( On i^i Fin ) -> ( N +o 1o ) e. ( On i^i Fin ) ) |