Description: The finite ordinals are a set. See also onprc and fiprc for proof that On and Fin are proper classes. (Contributed by RP, 27-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | finonex | |- ( On i^i Fin ) e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 2 | omex | |- _om e. _V |
|
| 3 | 1 2 | eqeltrri | |- ( On i^i Fin ) e. _V |