Description: The finite ordinals are a set. See also onprc and fiprc for proof that On and Fin are proper classes. (Contributed by RP, 27-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | finonex | |- ( On i^i Fin ) e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onfin2 | |- _om = ( On i^i Fin ) |
|
2 | omex | |- _om e. _V |
|
3 | 1 2 | eqeltrri | |- ( On i^i Fin ) e. _V |