Metamath Proof Explorer


Theorem finonex

Description: The finite ordinals are a set. See also onprc and fiprc for proof that On and Fin are proper classes. (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion finonex
|- ( On i^i Fin ) e. _V

Proof

Step Hyp Ref Expression
1 onfin2
 |-  _om = ( On i^i Fin )
2 omex
 |-  _om e. _V
3 1 2 eqeltrri
 |-  ( On i^i Fin ) e. _V