Description: The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flodddiv4lt | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) < ( 𝑁 / 4 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 2 | 4z | ⊢ 4 ∈ ℤ | |
| 3 | 4ne0 | ⊢ 4 ≠ 0 | |
| 4 | 2 3 | pm3.2i | ⊢ ( 4 ∈ ℤ ∧ 4 ≠ 0 ) | 
| 5 | 4 | a1i | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( 4 ∈ ℤ ∧ 4 ≠ 0 ) ) | 
| 6 | 4dvdseven | ⊢ ( 4 ∥ 𝑁 → 2 ∥ 𝑁 ) | |
| 7 | 6 | con3i | ⊢ ( ¬ 2 ∥ 𝑁 → ¬ 4 ∥ 𝑁 ) | 
| 8 | 7 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ¬ 4 ∥ 𝑁 ) | 
| 9 | fldivndvdslt | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 4 ∈ ℤ ∧ 4 ≠ 0 ) ∧ ¬ 4 ∥ 𝑁 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) < ( 𝑁 / 4 ) ) | |
| 10 | 1 5 8 9 | syl3anc | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) < ( 𝑁 / 4 ) ) |