Metamath Proof Explorer


Theorem fnimafnex

Description: The functional image of a function value exists. (Contributed by RP, 31-Oct-2024)

Ref Expression
Hypothesis fnimafnex.f 𝐹 Fn 𝐵
Assertion fnimafnex ( 𝐹 “ ( 𝐺𝐴 ) ) ∈ V

Proof

Step Hyp Ref Expression
1 fnimafnex.f 𝐹 Fn 𝐵
2 fnfun ( 𝐹 Fn 𝐵 → Fun 𝐹 )
3 1 2 ax-mp Fun 𝐹
4 fvex ( 𝐺𝐴 ) ∈ V
5 funimaexg ( ( Fun 𝐹 ∧ ( 𝐺𝐴 ) ∈ V ) → ( 𝐹 “ ( 𝐺𝐴 ) ) ∈ V )
6 3 4 5 mp2an ( 𝐹 “ ( 𝐺𝐴 ) ) ∈ V