Metamath Proof Explorer


Theorem fnimafnex

Description: The functional image of a function value exists. (Contributed by RP, 31-Oct-2024)

Ref Expression
Hypothesis fnimafnex.f
|- F Fn B
Assertion fnimafnex
|- ( F " ( G ` A ) ) e. _V

Proof

Step Hyp Ref Expression
1 fnimafnex.f
 |-  F Fn B
2 fnfun
 |-  ( F Fn B -> Fun F )
3 1 2 ax-mp
 |-  Fun F
4 fvex
 |-  ( G ` A ) e. _V
5 funimaexg
 |-  ( ( Fun F /\ ( G ` A ) e. _V ) -> ( F " ( G ` A ) ) e. _V )
6 3 4 5 mp2an
 |-  ( F " ( G ` A ) ) e. _V