Metamath Proof Explorer


Theorem fnmap

Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion fnmap m Fn ( V × V )

Proof

Step Hyp Ref Expression
1 df-map m = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓𝑓 : 𝑦𝑥 } )
2 mapex ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → { 𝑓𝑓 : 𝑦𝑥 } ∈ V )
3 2 el2v { 𝑓𝑓 : 𝑦𝑥 } ∈ V
4 1 3 fnmpoi m Fn ( V × V )