Metamath Proof Explorer
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003) (Revised by Mario Carneiro, 8-Sep-2013)
|
|
Ref |
Expression |
|
Assertion |
fnmap |
⊢ ↑m Fn ( V × V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-map |
⊢ ↑m = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } ) |
2 |
|
mapex |
⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } ∈ V ) |
3 |
2
|
el2v |
⊢ { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } ∈ V |
4 |
1 3
|
fnmpoi |
⊢ ↑m Fn ( V × V ) |