Metamath Proof Explorer


Theorem fnseqom

Description: An index-aware recursive definition defines a function on the natural numbers. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis seqom.a 𝐺 = seqω ( 𝐹 , 𝐼 )
Assertion fnseqom 𝐺 Fn ω

Proof

Step Hyp Ref Expression
1 seqom.a 𝐺 = seqω ( 𝐹 , 𝐼 )
2 seqomlem0 rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ ⟨ suc 𝑎 , ( 𝑎 𝐹 𝑏 ) ⟩ ) , ⟨ ∅ , ( I ‘ 𝐼 ) ⟩ ) = rec ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ ⟨ suc 𝑐 , ( 𝑐 𝐹 𝑑 ) ⟩ ) , ⟨ ∅ , ( I ‘ 𝐼 ) ⟩ )
3 2 seqomlem2 ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ ⟨ suc 𝑎 , ( 𝑎 𝐹 𝑏 ) ⟩ ) , ⟨ ∅ , ( I ‘ 𝐼 ) ⟩ ) “ ω ) Fn ω
4 df-seqom seqω ( 𝐹 , 𝐼 ) = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ ⟨ suc 𝑎 , ( 𝑎 𝐹 𝑏 ) ⟩ ) , ⟨ ∅ , ( I ‘ 𝐼 ) ⟩ ) “ ω )
5 1 4 eqtri 𝐺 = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ ⟨ suc 𝑎 , ( 𝑎 𝐹 𝑏 ) ⟩ ) , ⟨ ∅ , ( I ‘ 𝐼 ) ⟩ ) “ ω )
6 5 fneq1i ( 𝐺 Fn ω ↔ ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ ⟨ suc 𝑎 , ( 𝑎 𝐹 𝑏 ) ⟩ ) , ⟨ ∅ , ( I ‘ 𝐼 ) ⟩ ) “ ω ) Fn ω )
7 3 6 mpbir 𝐺 Fn ω