| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqom.a |  |-  G = seqom ( F , I ) | 
						
							| 2 |  | seqomlem0 |  |-  rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. ) | 
						
							| 3 | 2 | seqomlem2 |  |-  ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) Fn _om | 
						
							| 4 |  | df-seqom |  |-  seqom ( F , I ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) | 
						
							| 5 | 1 4 | eqtri |  |-  G = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) | 
						
							| 6 | 5 | fneq1i |  |-  ( G Fn _om <-> ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) Fn _om ) | 
						
							| 7 | 3 6 | mpbir |  |-  G Fn _om |