Metamath Proof Explorer


Theorem foov

Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006)

Ref Expression
Assertion foov ( 𝐹 : ( 𝐴 × 𝐵 ) –onto𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 dffo3 ( 𝐹 : ( 𝐴 × 𝐵 ) –onto𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧𝐶𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹𝑤 ) ) )
2 fveq2 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐹𝑤 ) = ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) )
3 df-ov ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ )
4 2 3 eqtr4di ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐹𝑤 ) = ( 𝑥 𝐹 𝑦 ) )
5 4 eqeq2d ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧 = ( 𝐹𝑤 ) ↔ 𝑧 = ( 𝑥 𝐹 𝑦 ) ) )
6 5 rexxp ( ∃ 𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹𝑤 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) )
7 6 ralbii ( ∀ 𝑧𝐶𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹𝑤 ) ↔ ∀ 𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) )
8 7 anbi2i ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧𝐶𝑤 ∈ ( 𝐴 × 𝐵 ) 𝑧 = ( 𝐹𝑤 ) ) ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) )
9 1 8 bitri ( 𝐹 : ( 𝐴 × 𝐵 ) –onto𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ) )