Metamath Proof Explorer


Theorem frege128

Description: Lemma for frege129 . Proposition 128 of Frege1879 p. 83. (Contributed by RP, 9-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege123.x 𝑋𝑈
frege123.y 𝑌𝑉
frege124.m 𝑀𝑊
frege124.r 𝑅𝑆
Assertion frege128 ( ( 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 → ( 𝑌 𝑅 𝑋 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 ) ) ) → ( Fun 𝑅 → ( ( ¬ 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 ) → ( 𝑌 𝑅 𝑋 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 frege123.x 𝑋𝑈
2 frege123.y 𝑌𝑉
3 frege124.m 𝑀𝑊
4 frege124.r 𝑅𝑆
5 1 2 3 4 frege127 ( Fun 𝑅 → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → ( 𝑌 𝑅 𝑋 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 ) ) ) )
6 frege51 ( ( Fun 𝑅 → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → ( 𝑌 𝑅 𝑋 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 ) ) ) ) → ( ( 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 → ( 𝑌 𝑅 𝑋 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 ) ) ) → ( Fun 𝑅 → ( ( ¬ 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 ) → ( 𝑌 𝑅 𝑋 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 ) ) ) ) ) )
7 5 6 ax-mp ( ( 𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 → ( 𝑌 𝑅 𝑋 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 ) ) ) → ( Fun 𝑅 → ( ( ¬ 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑌 ) → ( 𝑌 𝑅 𝑋 → ( ¬ 𝑋 ( t+ ‘ 𝑅 ) 𝑀𝑀 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 ) ) ) ) )