Metamath Proof Explorer


Theorem frege51

Description: Compare with jaod . Proposition 51 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege51 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜃𝜒 ) → ( 𝜑 → ( ( ¬ 𝜓𝜃 ) → 𝜒 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege50 ( ( 𝜓𝜒 ) → ( ( 𝜃𝜒 ) → ( ( ¬ 𝜓𝜃 ) → 𝜒 ) ) )
2 frege18 ( ( ( 𝜓𝜒 ) → ( ( 𝜃𝜒 ) → ( ( ¬ 𝜓𝜃 ) → 𝜒 ) ) ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜃𝜒 ) → ( 𝜑 → ( ( ¬ 𝜓𝜃 ) → 𝜒 ) ) ) ) )
3 1 2 ax-mp ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜃𝜒 ) → ( 𝜑 → ( ( ¬ 𝜓𝜃 ) → 𝜒 ) ) ) )