Metamath Proof Explorer


Theorem frege26

Description: Identical to idd . Proposition 26 of Frege1879 p. 42. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege26 ( 𝜑 → ( 𝜓𝜓 ) )

Proof

Step Hyp Ref Expression
1 ax-frege1 ( 𝜓 → ( 𝜑𝜓 ) )
2 ax-frege8 ( ( 𝜓 → ( 𝜑𝜓 ) ) → ( 𝜑 → ( 𝜓𝜓 ) ) )
3 1 2 ax-mp ( 𝜑 → ( 𝜓𝜓 ) )