Metamath Proof Explorer


Theorem frege38

Description: Identical to pm2.21 . Proposition 38 of Frege1879 p. 46. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege38 ( ¬ 𝜑 → ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 frege36 ( 𝜑 → ( ¬ 𝜑𝜓 ) )
2 ax-frege8 ( ( 𝜑 → ( ¬ 𝜑𝜓 ) ) → ( ¬ 𝜑 → ( 𝜑𝜓 ) ) )
3 1 2 ax-mp ( ¬ 𝜑 → ( 𝜑𝜓 ) )