Metamath Proof Explorer


Theorem frege53a

Description: Lemma for frege55a . Proposition 53 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege53a ( if- ( 𝜑 , 𝜃 , 𝜒 ) → ( ( 𝜑𝜓 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege52a ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜃 , 𝜒 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) )
2 ax-frege8 ( ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜃 , 𝜒 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) ) → ( if- ( 𝜑 , 𝜃 , 𝜒 ) → ( ( 𝜑𝜓 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) ) )
3 1 2 ax-mp ( if- ( 𝜑 , 𝜃 , 𝜒 ) → ( ( 𝜑𝜓 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) )