Description: Lemma for frege55a . Proposition 53 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege53a | ⊢ ( if- ( 𝜑 , 𝜃 , 𝜒 ) → ( ( 𝜑 ↔ 𝜓 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege52a | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( if- ( 𝜑 , 𝜃 , 𝜒 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) ) | |
2 | ax-frege8 | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → ( if- ( 𝜑 , 𝜃 , 𝜒 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) ) → ( if- ( 𝜑 , 𝜃 , 𝜒 ) → ( ( 𝜑 ↔ 𝜓 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( if- ( 𝜑 , 𝜃 , 𝜒 ) → ( ( 𝜑 ↔ 𝜓 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) ) |