Metamath Proof Explorer


Theorem frege53a

Description: Lemma for frege55a . Proposition 53 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege53a
|- ( if- ( ph , th , ch ) -> ( ( ph <-> ps ) -> if- ( ps , th , ch ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege52a
 |-  ( ( ph <-> ps ) -> ( if- ( ph , th , ch ) -> if- ( ps , th , ch ) ) )
2 ax-frege8
 |-  ( ( ( ph <-> ps ) -> ( if- ( ph , th , ch ) -> if- ( ps , th , ch ) ) ) -> ( if- ( ph , th , ch ) -> ( ( ph <-> ps ) -> if- ( ps , th , ch ) ) ) )
3 1 2 ax-mp
 |-  ( if- ( ph , th , ch ) -> ( ( ph <-> ps ) -> if- ( ps , th , ch ) ) )