Metamath Proof Explorer


Theorem frege56a

Description: Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege56a ( ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ) → ( ( 𝜓𝜑 ) → ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege55cor1a ( ( 𝜓𝜑 ) → ( 𝜑𝜓 ) )
2 frege9 ( ( ( 𝜓𝜑 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ) → ( ( 𝜓𝜑 ) → ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ) ) )
3 1 2 ax-mp ( ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ) → ( ( 𝜓𝜑 ) → ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ) )