Metamath Proof Explorer


Theorem frege56a

Description: Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege56a
|- ( ( ( ph <-> ps ) -> ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) ) -> ( ( ps <-> ph ) -> ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) ) )

Proof

Step Hyp Ref Expression
1 frege55cor1a
 |-  ( ( ps <-> ph ) -> ( ph <-> ps ) )
2 frege9
 |-  ( ( ( ps <-> ph ) -> ( ph <-> ps ) ) -> ( ( ( ph <-> ps ) -> ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) ) -> ( ( ps <-> ph ) -> ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( ph <-> ps ) -> ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) ) -> ( ( ps <-> ph ) -> ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) ) )