Metamath Proof Explorer


Theorem frege57b

Description: Analogue of frege57aid . Proposition 57 of Frege1879 p. 51. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege57b ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑧 ] 𝜑 → [ 𝑥 / 𝑧 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 frege52b ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑧 ] 𝜑 → [ 𝑥 / 𝑧 ] 𝜑 ) )
2 frege56b ( ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑧 ] 𝜑 → [ 𝑥 / 𝑧 ] 𝜑 ) ) → ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑧 ] 𝜑 → [ 𝑥 / 𝑧 ] 𝜑 ) ) )
3 1 2 ax-mp ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑧 ] 𝜑 → [ 𝑥 / 𝑧 ] 𝜑 ) )