Metamath Proof Explorer
Description: Lemma for frege57b . Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
frege56b |
⊢ ( ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑧 ] 𝜑 → [ 𝑦 / 𝑧 ] 𝜑 ) ) → ( 𝑦 = 𝑥 → ( [ 𝑥 / 𝑧 ] 𝜑 → [ 𝑦 / 𝑧 ] 𝜑 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
frege55b |
⊢ ( 𝑦 = 𝑥 → 𝑥 = 𝑦 ) |
2 |
|
frege9 |
⊢ ( ( 𝑦 = 𝑥 → 𝑥 = 𝑦 ) → ( ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑧 ] 𝜑 → [ 𝑦 / 𝑧 ] 𝜑 ) ) → ( 𝑦 = 𝑥 → ( [ 𝑥 / 𝑧 ] 𝜑 → [ 𝑦 / 𝑧 ] 𝜑 ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑧 ] 𝜑 → [ 𝑦 / 𝑧 ] 𝜑 ) ) → ( 𝑦 = 𝑥 → ( [ 𝑥 / 𝑧 ] 𝜑 → [ 𝑦 / 𝑧 ] 𝜑 ) ) ) |