Metamath Proof Explorer


Theorem frege56b

Description: Lemma for frege57b . Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege56b
|- ( ( x = y -> ( [ x / z ] ph -> [ y / z ] ph ) ) -> ( y = x -> ( [ x / z ] ph -> [ y / z ] ph ) ) )

Proof

Step Hyp Ref Expression
1 frege55b
 |-  ( y = x -> x = y )
2 frege9
 |-  ( ( y = x -> x = y ) -> ( ( x = y -> ( [ x / z ] ph -> [ y / z ] ph ) ) -> ( y = x -> ( [ x / z ] ph -> [ y / z ] ph ) ) ) )
3 1 2 ax-mp
 |-  ( ( x = y -> ( [ x / z ] ph -> [ y / z ] ph ) ) -> ( y = x -> ( [ x / z ] ph -> [ y / z ] ph ) ) )