Metamath Proof Explorer


Theorem frege62c

Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara when the minor premise has a particular context. Proposition 62 of Frege1879 p. 52. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a 𝐴𝐵
Assertion frege62c ( [ 𝐴 / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑𝜓 ) → [ 𝐴 / 𝑥 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 frege59c.a 𝐴𝐵
2 1 frege58c ( ∀ 𝑥 ( 𝜑𝜓 ) → [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) )
3 sbcim1 ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )
4 2 3 syl ( ∀ 𝑥 ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )
5 ax-frege8 ( ( ∀ 𝑥 ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑𝜓 ) → [ 𝐴 / 𝑥 ] 𝜓 ) ) )
6 4 5 ax-mp ( [ 𝐴 / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑𝜓 ) → [ 𝐴 / 𝑥 ] 𝜓 ) )