Metamath Proof Explorer


Theorem frpoins2fg

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022)

Ref Expression
Hypotheses frpoins2fg.1 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
frpoins2fg.2 𝑦 𝜓
frpoins2fg.3 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
Assertion frpoins2fg ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 frpoins2fg.1 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
2 frpoins2fg.2 𝑦 𝜓
3 frpoins2fg.3 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
4 sbsbc ( [ 𝑧 / 𝑦 ] 𝜑[ 𝑧 / 𝑦 ] 𝜑 )
5 2 3 sbiev ( [ 𝑧 / 𝑦 ] 𝜑𝜓 )
6 4 5 bitr3i ( [ 𝑧 / 𝑦 ] 𝜑𝜓 )
7 6 ralbii ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 )
8 1 adantl ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ 𝑦𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
9 7 8 syl5bi ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ 𝑦𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
10 9 frpoinsg ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )