Step |
Hyp |
Ref |
Expression |
1 |
|
frpoins2fg.1 |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) |
2 |
|
frpoins2fg.2 |
⊢ Ⅎ 𝑦 𝜓 |
3 |
|
frpoins2fg.3 |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) |
5 |
2 3
|
sbiev |
⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
6 |
4 5
|
bitr3i |
⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 ) |
8 |
1
|
adantl |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) |
9 |
7 8
|
syl5bi |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) |
10 |
9
|
frpoinsg |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |