Description: The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumre.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumre.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fsumre | ⊢ ( 𝜑 → ( ℜ ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( ℜ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumre.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumre.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | fss | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℜ : ℂ ⟶ ℂ ) | |
| 6 | 3 4 5 | mp2an | ⊢ ℜ : ℂ ⟶ ℂ |
| 7 | readd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ℜ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ℜ ‘ 𝑥 ) + ( ℜ ‘ 𝑦 ) ) ) | |
| 8 | 1 2 6 7 | fsumrelem | ⊢ ( 𝜑 → ( ℜ ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( ℜ ‘ 𝐵 ) ) |