Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppmapnn0ub |
⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 → ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ) |
2 |
|
simpllr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → 𝑍 ∈ 𝑉 ) |
3 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ) |
4 |
|
simplr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → 𝑚 ∈ ℕ0 ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
6 |
2 3 4 5
|
suppssfz |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( 𝐹 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) |
7 |
6
|
ex |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) ) |
8 |
7
|
reximdva |
⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ∃ 𝑚 ∈ ℕ0 ( 𝐹 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) ) |
9 |
1 8
|
syld |
⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 → ∃ 𝑚 ∈ ℕ0 ( 𝐹 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) ) |