| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppssov1.s |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) finSupp 𝑌 ) |
| 2 |
|
fsuppssov1.o |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 ) |
| 3 |
|
fsuppssov1.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑉 ) |
| 4 |
|
fsuppssov1.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ 𝑅 ) |
| 5 |
|
fsuppssov1.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
| 6 |
|
relfsupp |
⊢ Rel finSupp |
| 7 |
6
|
brrelex1i |
⊢ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) finSupp 𝑌 → ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) ∈ V ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) ∈ V ) |
| 9 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) : 𝐷 ⟶ 𝑉 ) |
| 10 |
|
dmfex |
⊢ ( ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) ∈ V ∧ ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) : 𝐷 ⟶ 𝑉 ) → 𝐷 ∈ V ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 12 |
11
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ) |
| 13 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ) |
| 15 |
|
ssidd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ⊆ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ) |
| 16 |
6
|
brrelex2i |
⊢ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) finSupp 𝑌 → 𝑌 ∈ V ) |
| 17 |
1 16
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 18 |
15 2 3 4 17
|
suppssov1 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ ( ( 𝑥 ∈ 𝐷 ↦ 𝐴 ) supp 𝑌 ) ) |
| 19 |
12 5 14 1 18
|
fsuppsssuppgd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) finSupp 𝑍 ) |