Step |
Hyp |
Ref |
Expression |
1 |
|
funopsn.x |
⊢ 𝑋 ∈ V |
2 |
|
funopsn.y |
⊢ 𝑌 ∈ V |
3 |
|
eqid |
⊢ ⟨ 𝑋 , 𝑌 ⟩ = ⟨ 𝑋 , 𝑌 ⟩ |
4 |
1 2
|
funopsn |
⊢ ( ( Fun ⟨ 𝑋 , 𝑌 ⟩ ∧ ⟨ 𝑋 , 𝑌 ⟩ = ⟨ 𝑋 , 𝑌 ⟩ ) → ∃ 𝑎 ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) ) |
5 |
3 4
|
mpan2 |
⊢ ( Fun ⟨ 𝑋 , 𝑌 ⟩ → ∃ 𝑎 ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) ) |
6 |
|
vex |
⊢ 𝑎 ∈ V |
7 |
6 6
|
funsn |
⊢ Fun { ⟨ 𝑎 , 𝑎 ⟩ } |
8 |
|
funeq |
⊢ ( ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → ( Fun ⟨ 𝑋 , 𝑌 ⟩ ↔ Fun { ⟨ 𝑎 , 𝑎 ⟩ } ) ) |
9 |
7 8
|
mpbiri |
⊢ ( ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → Fun ⟨ 𝑋 , 𝑌 ⟩ ) |
10 |
9
|
adantl |
⊢ ( ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → Fun ⟨ 𝑋 , 𝑌 ⟩ ) |
11 |
10
|
exlimiv |
⊢ ( ∃ 𝑎 ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → Fun ⟨ 𝑋 , 𝑌 ⟩ ) |
12 |
5 11
|
impbii |
⊢ ( Fun ⟨ 𝑋 , 𝑌 ⟩ ↔ ∃ 𝑎 ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) ) |