Metamath Proof Explorer


Theorem funop

Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng , as relsnopg is to relop . (New usage is discouraged.)

Ref Expression
Hypotheses funopsn.x 𝑋 ∈ V
funopsn.y 𝑌 ∈ V
Assertion funop ( Fun ⟨ 𝑋 , 𝑌 ⟩ ↔ ∃ 𝑎 ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) )

Proof

Step Hyp Ref Expression
1 funopsn.x 𝑋 ∈ V
2 funopsn.y 𝑌 ∈ V
3 eqid 𝑋 , 𝑌 ⟩ = ⟨ 𝑋 , 𝑌
4 1 2 funopsn ( ( Fun ⟨ 𝑋 , 𝑌 ⟩ ∧ ⟨ 𝑋 , 𝑌 ⟩ = ⟨ 𝑋 , 𝑌 ⟩ ) → ∃ 𝑎 ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) )
5 3 4 mpan2 ( Fun ⟨ 𝑋 , 𝑌 ⟩ → ∃ 𝑎 ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) )
6 vex 𝑎 ∈ V
7 6 6 funsn Fun { ⟨ 𝑎 , 𝑎 ⟩ }
8 funeq ( ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → ( Fun ⟨ 𝑋 , 𝑌 ⟩ ↔ Fun { ⟨ 𝑎 , 𝑎 ⟩ } ) )
9 7 8 mpbiri ( ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } → Fun ⟨ 𝑋 , 𝑌 ⟩ )
10 9 adantl ( ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → Fun ⟨ 𝑋 , 𝑌 ⟩ )
11 10 exlimiv ( ∃ 𝑎 ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) → Fun ⟨ 𝑋 , 𝑌 ⟩ )
12 5 11 impbii ( Fun ⟨ 𝑋 , 𝑌 ⟩ ↔ ∃ 𝑎 ( 𝑋 = { 𝑎 } ∧ ⟨ 𝑋 , 𝑌 ⟩ = { ⟨ 𝑎 , 𝑎 ⟩ } ) )