| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funopsn.x |
|- X e. _V |
| 2 |
|
funopsn.y |
|- Y e. _V |
| 3 |
|
eqid |
|- <. X , Y >. = <. X , Y >. |
| 4 |
1 2
|
funopsn |
|- ( ( Fun <. X , Y >. /\ <. X , Y >. = <. X , Y >. ) -> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |
| 5 |
3 4
|
mpan2 |
|- ( Fun <. X , Y >. -> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |
| 6 |
|
vex |
|- a e. _V |
| 7 |
6 6
|
funsn |
|- Fun { <. a , a >. } |
| 8 |
|
funeq |
|- ( <. X , Y >. = { <. a , a >. } -> ( Fun <. X , Y >. <-> Fun { <. a , a >. } ) ) |
| 9 |
7 8
|
mpbiri |
|- ( <. X , Y >. = { <. a , a >. } -> Fun <. X , Y >. ) |
| 10 |
9
|
adantl |
|- ( ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) -> Fun <. X , Y >. ) |
| 11 |
10
|
exlimiv |
|- ( E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) -> Fun <. X , Y >. ) |
| 12 |
5 11
|
impbii |
|- ( Fun <. X , Y >. <-> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |