| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relop.1 |
|- A e. _V |
| 2 |
|
relop.2 |
|- B e. _V |
| 3 |
|
df-rel |
|- ( Rel <. A , B >. <-> <. A , B >. C_ ( _V X. _V ) ) |
| 4 |
|
df-ss |
|- ( <. A , B >. C_ ( _V X. _V ) <-> A. z ( z e. <. A , B >. -> z e. ( _V X. _V ) ) ) |
| 5 |
1 2
|
elop |
|- ( z e. <. A , B >. <-> ( z = { A } \/ z = { A , B } ) ) |
| 6 |
|
elvv |
|- ( z e. ( _V X. _V ) <-> E. x E. y z = <. x , y >. ) |
| 7 |
5 6
|
imbi12i |
|- ( ( z e. <. A , B >. -> z e. ( _V X. _V ) ) <-> ( ( z = { A } \/ z = { A , B } ) -> E. x E. y z = <. x , y >. ) ) |
| 8 |
|
jaob |
|- ( ( ( z = { A } \/ z = { A , B } ) -> E. x E. y z = <. x , y >. ) <-> ( ( z = { A } -> E. x E. y z = <. x , y >. ) /\ ( z = { A , B } -> E. x E. y z = <. x , y >. ) ) ) |
| 9 |
7 8
|
bitri |
|- ( ( z e. <. A , B >. -> z e. ( _V X. _V ) ) <-> ( ( z = { A } -> E. x E. y z = <. x , y >. ) /\ ( z = { A , B } -> E. x E. y z = <. x , y >. ) ) ) |
| 10 |
9
|
albii |
|- ( A. z ( z e. <. A , B >. -> z e. ( _V X. _V ) ) <-> A. z ( ( z = { A } -> E. x E. y z = <. x , y >. ) /\ ( z = { A , B } -> E. x E. y z = <. x , y >. ) ) ) |
| 11 |
|
19.26 |
|- ( A. z ( ( z = { A } -> E. x E. y z = <. x , y >. ) /\ ( z = { A , B } -> E. x E. y z = <. x , y >. ) ) <-> ( A. z ( z = { A } -> E. x E. y z = <. x , y >. ) /\ A. z ( z = { A , B } -> E. x E. y z = <. x , y >. ) ) ) |
| 12 |
10 11
|
bitri |
|- ( A. z ( z e. <. A , B >. -> z e. ( _V X. _V ) ) <-> ( A. z ( z = { A } -> E. x E. y z = <. x , y >. ) /\ A. z ( z = { A , B } -> E. x E. y z = <. x , y >. ) ) ) |
| 13 |
4 12
|
bitri |
|- ( <. A , B >. C_ ( _V X. _V ) <-> ( A. z ( z = { A } -> E. x E. y z = <. x , y >. ) /\ A. z ( z = { A , B } -> E. x E. y z = <. x , y >. ) ) ) |
| 14 |
|
snex |
|- { A } e. _V |
| 15 |
|
eqeq1 |
|- ( z = { A } -> ( z = { A } <-> { A } = { A } ) ) |
| 16 |
|
eqeq1 |
|- ( z = { A } -> ( z = <. x , y >. <-> { A } = <. x , y >. ) ) |
| 17 |
|
eqcom |
|- ( { A } = <. x , y >. <-> <. x , y >. = { A } ) |
| 18 |
|
vex |
|- x e. _V |
| 19 |
|
vex |
|- y e. _V |
| 20 |
18 19
|
opeqsn |
|- ( <. x , y >. = { A } <-> ( x = y /\ A = { x } ) ) |
| 21 |
17 20
|
bitri |
|- ( { A } = <. x , y >. <-> ( x = y /\ A = { x } ) ) |
| 22 |
16 21
|
bitrdi |
|- ( z = { A } -> ( z = <. x , y >. <-> ( x = y /\ A = { x } ) ) ) |
| 23 |
22
|
2exbidv |
|- ( z = { A } -> ( E. x E. y z = <. x , y >. <-> E. x E. y ( x = y /\ A = { x } ) ) ) |
| 24 |
15 23
|
imbi12d |
|- ( z = { A } -> ( ( z = { A } -> E. x E. y z = <. x , y >. ) <-> ( { A } = { A } -> E. x E. y ( x = y /\ A = { x } ) ) ) ) |
| 25 |
14 24
|
spcv |
|- ( A. z ( z = { A } -> E. x E. y z = <. x , y >. ) -> ( { A } = { A } -> E. x E. y ( x = y /\ A = { x } ) ) ) |
| 26 |
|
sneq |
|- ( w = x -> { w } = { x } ) |
| 27 |
26
|
eqeq2d |
|- ( w = x -> ( A = { w } <-> A = { x } ) ) |
| 28 |
27
|
cbvexvw |
|- ( E. w A = { w } <-> E. x A = { x } ) |
| 29 |
|
ax6evr |
|- E. y x = y |
| 30 |
|
19.41v |
|- ( E. y ( x = y /\ A = { x } ) <-> ( E. y x = y /\ A = { x } ) ) |
| 31 |
29 30
|
mpbiran |
|- ( E. y ( x = y /\ A = { x } ) <-> A = { x } ) |
| 32 |
31
|
exbii |
|- ( E. x E. y ( x = y /\ A = { x } ) <-> E. x A = { x } ) |
| 33 |
|
eqid |
|- { A } = { A } |
| 34 |
33
|
a1bi |
|- ( E. x E. y ( x = y /\ A = { x } ) <-> ( { A } = { A } -> E. x E. y ( x = y /\ A = { x } ) ) ) |
| 35 |
28 32 34
|
3bitr2ri |
|- ( ( { A } = { A } -> E. x E. y ( x = y /\ A = { x } ) ) <-> E. w A = { w } ) |
| 36 |
25 35
|
sylib |
|- ( A. z ( z = { A } -> E. x E. y z = <. x , y >. ) -> E. w A = { w } ) |
| 37 |
|
eqid |
|- { A , B } = { A , B } |
| 38 |
|
prex |
|- { A , B } e. _V |
| 39 |
|
eqeq1 |
|- ( z = { A , B } -> ( z = { A , B } <-> { A , B } = { A , B } ) ) |
| 40 |
|
eqeq1 |
|- ( z = { A , B } -> ( z = <. x , y >. <-> { A , B } = <. x , y >. ) ) |
| 41 |
40
|
2exbidv |
|- ( z = { A , B } -> ( E. x E. y z = <. x , y >. <-> E. x E. y { A , B } = <. x , y >. ) ) |
| 42 |
39 41
|
imbi12d |
|- ( z = { A , B } -> ( ( z = { A , B } -> E. x E. y z = <. x , y >. ) <-> ( { A , B } = { A , B } -> E. x E. y { A , B } = <. x , y >. ) ) ) |
| 43 |
38 42
|
spcv |
|- ( A. z ( z = { A , B } -> E. x E. y z = <. x , y >. ) -> ( { A , B } = { A , B } -> E. x E. y { A , B } = <. x , y >. ) ) |
| 44 |
37 43
|
mpi |
|- ( A. z ( z = { A , B } -> E. x E. y z = <. x , y >. ) -> E. x E. y { A , B } = <. x , y >. ) |
| 45 |
|
eqcom |
|- ( { A , B } = <. x , y >. <-> <. x , y >. = { A , B } ) |
| 46 |
18 19 1 2
|
opeqpr |
|- ( <. x , y >. = { A , B } <-> ( ( A = { x } /\ B = { x , y } ) \/ ( A = { x , y } /\ B = { x } ) ) ) |
| 47 |
45 46
|
bitri |
|- ( { A , B } = <. x , y >. <-> ( ( A = { x } /\ B = { x , y } ) \/ ( A = { x , y } /\ B = { x } ) ) ) |
| 48 |
|
idd |
|- ( A = { w } -> ( ( A = { x } /\ B = { x , y } ) -> ( A = { x } /\ B = { x , y } ) ) ) |
| 49 |
|
eqtr2 |
|- ( ( A = { x , y } /\ A = { w } ) -> { x , y } = { w } ) |
| 50 |
18 19
|
preqsn |
|- ( { x , y } = { w } <-> ( x = y /\ y = w ) ) |
| 51 |
50
|
simplbi |
|- ( { x , y } = { w } -> x = y ) |
| 52 |
49 51
|
syl |
|- ( ( A = { x , y } /\ A = { w } ) -> x = y ) |
| 53 |
|
dfsn2 |
|- { x } = { x , x } |
| 54 |
|
preq2 |
|- ( x = y -> { x , x } = { x , y } ) |
| 55 |
53 54
|
eqtr2id |
|- ( x = y -> { x , y } = { x } ) |
| 56 |
55
|
eqeq2d |
|- ( x = y -> ( A = { x , y } <-> A = { x } ) ) |
| 57 |
53 54
|
eqtrid |
|- ( x = y -> { x } = { x , y } ) |
| 58 |
57
|
eqeq2d |
|- ( x = y -> ( B = { x } <-> B = { x , y } ) ) |
| 59 |
56 58
|
anbi12d |
|- ( x = y -> ( ( A = { x , y } /\ B = { x } ) <-> ( A = { x } /\ B = { x , y } ) ) ) |
| 60 |
59
|
biimpd |
|- ( x = y -> ( ( A = { x , y } /\ B = { x } ) -> ( A = { x } /\ B = { x , y } ) ) ) |
| 61 |
60
|
expd |
|- ( x = y -> ( A = { x , y } -> ( B = { x } -> ( A = { x } /\ B = { x , y } ) ) ) ) |
| 62 |
61
|
com12 |
|- ( A = { x , y } -> ( x = y -> ( B = { x } -> ( A = { x } /\ B = { x , y } ) ) ) ) |
| 63 |
62
|
adantr |
|- ( ( A = { x , y } /\ A = { w } ) -> ( x = y -> ( B = { x } -> ( A = { x } /\ B = { x , y } ) ) ) ) |
| 64 |
52 63
|
mpd |
|- ( ( A = { x , y } /\ A = { w } ) -> ( B = { x } -> ( A = { x } /\ B = { x , y } ) ) ) |
| 65 |
64
|
expcom |
|- ( A = { w } -> ( A = { x , y } -> ( B = { x } -> ( A = { x } /\ B = { x , y } ) ) ) ) |
| 66 |
65
|
impd |
|- ( A = { w } -> ( ( A = { x , y } /\ B = { x } ) -> ( A = { x } /\ B = { x , y } ) ) ) |
| 67 |
48 66
|
jaod |
|- ( A = { w } -> ( ( ( A = { x } /\ B = { x , y } ) \/ ( A = { x , y } /\ B = { x } ) ) -> ( A = { x } /\ B = { x , y } ) ) ) |
| 68 |
47 67
|
biimtrid |
|- ( A = { w } -> ( { A , B } = <. x , y >. -> ( A = { x } /\ B = { x , y } ) ) ) |
| 69 |
68
|
2eximdv |
|- ( A = { w } -> ( E. x E. y { A , B } = <. x , y >. -> E. x E. y ( A = { x } /\ B = { x , y } ) ) ) |
| 70 |
69
|
exlimiv |
|- ( E. w A = { w } -> ( E. x E. y { A , B } = <. x , y >. -> E. x E. y ( A = { x } /\ B = { x , y } ) ) ) |
| 71 |
70
|
imp |
|- ( ( E. w A = { w } /\ E. x E. y { A , B } = <. x , y >. ) -> E. x E. y ( A = { x } /\ B = { x , y } ) ) |
| 72 |
36 44 71
|
syl2an |
|- ( ( A. z ( z = { A } -> E. x E. y z = <. x , y >. ) /\ A. z ( z = { A , B } -> E. x E. y z = <. x , y >. ) ) -> E. x E. y ( A = { x } /\ B = { x , y } ) ) |
| 73 |
13 72
|
sylbi |
|- ( <. A , B >. C_ ( _V X. _V ) -> E. x E. y ( A = { x } /\ B = { x , y } ) ) |
| 74 |
|
simpr |
|- ( ( A = { x } /\ z = { A } ) -> z = { A } ) |
| 75 |
|
equid |
|- x = x |
| 76 |
75
|
jctl |
|- ( A = { x } -> ( x = x /\ A = { x } ) ) |
| 77 |
18 18
|
opeqsn |
|- ( <. x , x >. = { A } <-> ( x = x /\ A = { x } ) ) |
| 78 |
76 77
|
sylibr |
|- ( A = { x } -> <. x , x >. = { A } ) |
| 79 |
78
|
adantr |
|- ( ( A = { x } /\ z = { A } ) -> <. x , x >. = { A } ) |
| 80 |
74 79
|
eqtr4d |
|- ( ( A = { x } /\ z = { A } ) -> z = <. x , x >. ) |
| 81 |
|
opeq12 |
|- ( ( w = x /\ v = x ) -> <. w , v >. = <. x , x >. ) |
| 82 |
81
|
eqeq2d |
|- ( ( w = x /\ v = x ) -> ( z = <. w , v >. <-> z = <. x , x >. ) ) |
| 83 |
18 18 82
|
spc2ev |
|- ( z = <. x , x >. -> E. w E. v z = <. w , v >. ) |
| 84 |
80 83
|
syl |
|- ( ( A = { x } /\ z = { A } ) -> E. w E. v z = <. w , v >. ) |
| 85 |
84
|
adantlr |
|- ( ( ( A = { x } /\ B = { x , y } ) /\ z = { A } ) -> E. w E. v z = <. w , v >. ) |
| 86 |
|
preq12 |
|- ( ( A = { x } /\ B = { x , y } ) -> { A , B } = { { x } , { x , y } } ) |
| 87 |
86
|
eqeq2d |
|- ( ( A = { x } /\ B = { x , y } ) -> ( z = { A , B } <-> z = { { x } , { x , y } } ) ) |
| 88 |
87
|
biimpa |
|- ( ( ( A = { x } /\ B = { x , y } ) /\ z = { A , B } ) -> z = { { x } , { x , y } } ) |
| 89 |
18 19
|
dfop |
|- <. x , y >. = { { x } , { x , y } } |
| 90 |
88 89
|
eqtr4di |
|- ( ( ( A = { x } /\ B = { x , y } ) /\ z = { A , B } ) -> z = <. x , y >. ) |
| 91 |
|
opeq12 |
|- ( ( w = x /\ v = y ) -> <. w , v >. = <. x , y >. ) |
| 92 |
91
|
eqeq2d |
|- ( ( w = x /\ v = y ) -> ( z = <. w , v >. <-> z = <. x , y >. ) ) |
| 93 |
18 19 92
|
spc2ev |
|- ( z = <. x , y >. -> E. w E. v z = <. w , v >. ) |
| 94 |
90 93
|
syl |
|- ( ( ( A = { x } /\ B = { x , y } ) /\ z = { A , B } ) -> E. w E. v z = <. w , v >. ) |
| 95 |
85 94
|
jaodan |
|- ( ( ( A = { x } /\ B = { x , y } ) /\ ( z = { A } \/ z = { A , B } ) ) -> E. w E. v z = <. w , v >. ) |
| 96 |
95
|
ex |
|- ( ( A = { x } /\ B = { x , y } ) -> ( ( z = { A } \/ z = { A , B } ) -> E. w E. v z = <. w , v >. ) ) |
| 97 |
|
elvv |
|- ( z e. ( _V X. _V ) <-> E. w E. v z = <. w , v >. ) |
| 98 |
96 5 97
|
3imtr4g |
|- ( ( A = { x } /\ B = { x , y } ) -> ( z e. <. A , B >. -> z e. ( _V X. _V ) ) ) |
| 99 |
98
|
ssrdv |
|- ( ( A = { x } /\ B = { x , y } ) -> <. A , B >. C_ ( _V X. _V ) ) |
| 100 |
99
|
exlimivv |
|- ( E. x E. y ( A = { x } /\ B = { x , y } ) -> <. A , B >. C_ ( _V X. _V ) ) |
| 101 |
73 100
|
impbii |
|- ( <. A , B >. C_ ( _V X. _V ) <-> E. x E. y ( A = { x } /\ B = { x , y } ) ) |
| 102 |
3 101
|
bitri |
|- ( Rel <. A , B >. <-> E. x E. y ( A = { x } /\ B = { x , y } ) ) |