| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funrel | ⊢ ( Fun  ( 𝐹  ∪  𝐺 )  →  Rel  ( 𝐹  ∪  𝐺 ) ) | 
						
							| 2 |  | relun | ⊢ ( Rel  ( 𝐹  ∪  𝐺 )  ↔  ( Rel  𝐹  ∧  Rel  𝐺 ) ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( Fun  ( 𝐹  ∪  𝐺 )  →  ( Rel  𝐹  ∧  Rel  𝐺 ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( Rel  𝐹  ∧  Rel  𝐺 )  →  Rel  𝐹 ) | 
						
							| 5 |  | fununmo | ⊢ ( Fun  ( 𝐹  ∪  𝐺 )  →  ∃* 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 6 | 5 | alrimiv | ⊢ ( Fun  ( 𝐹  ∪  𝐺 )  →  ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 7 | 4 6 | anim12i | ⊢ ( ( ( Rel  𝐹  ∧  Rel  𝐺 )  ∧  Fun  ( 𝐹  ∪  𝐺 ) )  →  ( Rel  𝐹  ∧  ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 8 |  | dffun6 | ⊢ ( Fun  𝐹  ↔  ( Rel  𝐹  ∧  ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( ( Rel  𝐹  ∧  Rel  𝐺 )  ∧  Fun  ( 𝐹  ∪  𝐺 ) )  →  Fun  𝐹 ) | 
						
							| 10 |  | simpr | ⊢ ( ( Rel  𝐹  ∧  Rel  𝐺 )  →  Rel  𝐺 ) | 
						
							| 11 |  | uncom | ⊢ ( 𝐹  ∪  𝐺 )  =  ( 𝐺  ∪  𝐹 ) | 
						
							| 12 | 11 | funeqi | ⊢ ( Fun  ( 𝐹  ∪  𝐺 )  ↔  Fun  ( 𝐺  ∪  𝐹 ) ) | 
						
							| 13 |  | fununmo | ⊢ ( Fun  ( 𝐺  ∪  𝐹 )  →  ∃* 𝑦 𝑥 𝐺 𝑦 ) | 
						
							| 14 | 12 13 | sylbi | ⊢ ( Fun  ( 𝐹  ∪  𝐺 )  →  ∃* 𝑦 𝑥 𝐺 𝑦 ) | 
						
							| 15 | 14 | alrimiv | ⊢ ( Fun  ( 𝐹  ∪  𝐺 )  →  ∀ 𝑥 ∃* 𝑦 𝑥 𝐺 𝑦 ) | 
						
							| 16 | 10 15 | anim12i | ⊢ ( ( ( Rel  𝐹  ∧  Rel  𝐺 )  ∧  Fun  ( 𝐹  ∪  𝐺 ) )  →  ( Rel  𝐺  ∧  ∀ 𝑥 ∃* 𝑦 𝑥 𝐺 𝑦 ) ) | 
						
							| 17 |  | dffun6 | ⊢ ( Fun  𝐺  ↔  ( Rel  𝐺  ∧  ∀ 𝑥 ∃* 𝑦 𝑥 𝐺 𝑦 ) ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( ( ( Rel  𝐹  ∧  Rel  𝐺 )  ∧  Fun  ( 𝐹  ∪  𝐺 ) )  →  Fun  𝐺 ) | 
						
							| 19 | 9 18 | jca | ⊢ ( ( ( Rel  𝐹  ∧  Rel  𝐺 )  ∧  Fun  ( 𝐹  ∪  𝐺 ) )  →  ( Fun  𝐹  ∧  Fun  𝐺 ) ) | 
						
							| 20 | 3 19 | mpancom | ⊢ ( Fun  ( 𝐹  ∪  𝐺 )  →  ( Fun  𝐹  ∧  Fun  𝐺 ) ) |