Database GRAPH THEORY Vertices and edges Vertices and indexed edges The vertices and edges of a graph represented as extensible structure funvtxval0  
				
		 
		
			
		 
		Description:   The set of vertices of an extensible structure with a base set and (at
       least) another slot.  (Contributed by AV , 22-Sep-2020)   (Revised by AV , 7-Jun-2021)   (Revised by AV , 12-Nov-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						funvtxval0.s ⊢  𝑆   ∈  V  
				
					Assertion 
					funvtxval0 ⊢   ( ( Fun  ( 𝐺   ∖  { ∅ } )  ∧  𝑆   ≠  ( Base ‘ ndx )  ∧  { ( Base ‘ ndx ) ,  𝑆  }  ⊆  dom  𝐺  )  →  ( Vtx ‘ 𝐺  )  =  ( Base ‘ 𝐺  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							funvtxval0.s ⊢  𝑆   ∈  V  
						
							2 
								
							 
							necom ⊢  ( 𝑆   ≠  ( Base ‘ ndx )  ↔  ( Base ‘ ndx )  ≠  𝑆  )  
						
							3 
								
							 
							fvex ⊢  ( Base ‘ ndx )  ∈  V  
						
							4 
								3  1 
							 
							funvtxdm2val ⊢  ( ( Fun  ( 𝐺   ∖  { ∅ } )  ∧  ( Base ‘ ndx )  ≠  𝑆   ∧  { ( Base ‘ ndx ) ,  𝑆  }  ⊆  dom  𝐺  )  →  ( Vtx ‘ 𝐺  )  =  ( Base ‘ 𝐺  ) )  
						
							5 
								2  4 
							 
							syl3an2b ⊢  ( ( Fun  ( 𝐺   ∖  { ∅ } )  ∧  𝑆   ≠  ( Base ‘ ndx )  ∧  { ( Base ‘ ndx ) ,  𝑆  }  ⊆  dom  𝐺  )  →  ( Vtx ‘ 𝐺  )  =  ( Base ‘ 𝐺  ) )