| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basvtxval.s |
⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) |
| 2 |
|
basvtxval.d |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |
| 3 |
|
basvtxval.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝑌 ) |
| 4 |
|
basvtxval.b |
⊢ ( 𝜑 → 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ 𝐺 ) |
| 5 |
|
structn0fun |
⊢ ( 𝐺 Struct 𝑋 → Fun ( 𝐺 ∖ { ∅ } ) ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → Fun ( 𝐺 ∖ { ∅ } ) ) |
| 7 |
|
funvtxdmge2val |
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 8 |
6 2 7
|
syl2anc |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 9 |
1 3 4
|
opelstrbas |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝐺 ) ) |
| 10 |
8 9
|
eqtr4d |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |