Metamath Proof Explorer


Theorem edgfiedgval

Description: The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypotheses basvtxval.s ( 𝜑𝐺 Struct 𝑋 )
basvtxval.d ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) )
edgfiedgval.e ( 𝜑𝐸𝑌 )
edgfiedgval.f ( 𝜑 → ⟨ ( .ef ‘ ndx ) , 𝐸 ⟩ ∈ 𝐺 )
Assertion edgfiedgval ( 𝜑 → ( iEdg ‘ 𝐺 ) = 𝐸 )

Proof

Step Hyp Ref Expression
1 basvtxval.s ( 𝜑𝐺 Struct 𝑋 )
2 basvtxval.d ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) )
3 edgfiedgval.e ( 𝜑𝐸𝑌 )
4 edgfiedgval.f ( 𝜑 → ⟨ ( .ef ‘ ndx ) , 𝐸 ⟩ ∈ 𝐺 )
5 structn0fun ( 𝐺 Struct 𝑋 → Fun ( 𝐺 ∖ { ∅ } ) )
6 1 5 syl ( 𝜑 → Fun ( 𝐺 ∖ { ∅ } ) )
7 funiedgdmge2val ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) )
8 6 2 7 syl2anc ( 𝜑 → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) )
9 edgfid .ef = Slot ( .ef ‘ ndx )
10 structex ( 𝐺 Struct 𝑋𝐺 ∈ V )
11 1 10 syl ( 𝜑𝐺 ∈ V )
12 structfung ( 𝐺 Struct 𝑋 → Fun 𝐺 )
13 1 12 syl ( 𝜑 → Fun 𝐺 )
14 9 11 13 4 3 strfv2d ( 𝜑𝐸 = ( .ef ‘ 𝐺 ) )
15 8 14 eqtr4d ( 𝜑 → ( iEdg ‘ 𝐺 ) = 𝐸 )