Metamath Proof Explorer


Theorem edgfiedgval

Description: The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypotheses basvtxval.s φGStructX
basvtxval.d φ2domG
edgfiedgval.e φEY
edgfiedgval.f φefndxEG
Assertion edgfiedgval φiEdgG=E

Proof

Step Hyp Ref Expression
1 basvtxval.s φGStructX
2 basvtxval.d φ2domG
3 edgfiedgval.e φEY
4 edgfiedgval.f φefndxEG
5 structn0fun GStructXFunG
6 1 5 syl φFunG
7 funiedgdmge2val FunG2domGiEdgG=efG
8 6 2 7 syl2anc φiEdgG=efG
9 edgfid ef=Slotefndx
10 structex GStructXGV
11 1 10 syl φGV
12 structfung GStructXFunG-1-1
13 1 12 syl φFunG-1-1
14 9 11 13 4 3 strfv2d φE=efG
15 8 14 eqtr4d φiEdgG=E