Metamath Proof Explorer


Theorem basvtxval

Description: The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypotheses basvtxval.s
|- ( ph -> G Struct X )
basvtxval.d
|- ( ph -> 2 <_ ( # ` dom G ) )
basvtxval.v
|- ( ph -> V e. Y )
basvtxval.b
|- ( ph -> <. ( Base ` ndx ) , V >. e. G )
Assertion basvtxval
|- ( ph -> ( Vtx ` G ) = V )

Proof

Step Hyp Ref Expression
1 basvtxval.s
 |-  ( ph -> G Struct X )
2 basvtxval.d
 |-  ( ph -> 2 <_ ( # ` dom G ) )
3 basvtxval.v
 |-  ( ph -> V e. Y )
4 basvtxval.b
 |-  ( ph -> <. ( Base ` ndx ) , V >. e. G )
5 structn0fun
 |-  ( G Struct X -> Fun ( G \ { (/) } ) )
6 1 5 syl
 |-  ( ph -> Fun ( G \ { (/) } ) )
7 funvtxdmge2val
 |-  ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> ( Vtx ` G ) = ( Base ` G ) )
8 6 2 7 syl2anc
 |-  ( ph -> ( Vtx ` G ) = ( Base ` G ) )
9 1 3 4 opelstrbas
 |-  ( ph -> V = ( Base ` G ) )
10 8 9 eqtr4d
 |-  ( ph -> ( Vtx ` G ) = V )