Description: The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020) (Revised by AV, 12-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | basvtxval.s | |- ( ph -> G Struct X ) |
|
basvtxval.d | |- ( ph -> 2 <_ ( # ` dom G ) ) |
||
basvtxval.v | |- ( ph -> V e. Y ) |
||
basvtxval.b | |- ( ph -> <. ( Base ` ndx ) , V >. e. G ) |
||
Assertion | basvtxval | |- ( ph -> ( Vtx ` G ) = V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basvtxval.s | |- ( ph -> G Struct X ) |
|
2 | basvtxval.d | |- ( ph -> 2 <_ ( # ` dom G ) ) |
|
3 | basvtxval.v | |- ( ph -> V e. Y ) |
|
4 | basvtxval.b | |- ( ph -> <. ( Base ` ndx ) , V >. e. G ) |
|
5 | structn0fun | |- ( G Struct X -> Fun ( G \ { (/) } ) ) |
|
6 | 1 5 | syl | |- ( ph -> Fun ( G \ { (/) } ) ) |
7 | funvtxdmge2val | |- ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> ( Vtx ` G ) = ( Base ` G ) ) |
|
8 | 6 2 7 | syl2anc | |- ( ph -> ( Vtx ` G ) = ( Base ` G ) ) |
9 | 1 3 4 | opelstrbas | |- ( ph -> V = ( Base ` G ) ) |
10 | 8 9 | eqtr4d | |- ( ph -> ( Vtx ` G ) = V ) |