| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fusgrfupgrfs.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
fusgrfupgrfs.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
fusgrusgr |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) |
| 4 |
|
usgrupgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ UPGraph ) |
| 6 |
1
|
fusgrvtxfi |
⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
| 7 |
|
fusgrfis |
⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) |
| 8 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 9 |
2 8
|
usgredgffibi |
⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐼 ∈ Fin ) ) |
| 10 |
3 9
|
syl |
⊢ ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐼 ∈ Fin ) ) |
| 11 |
7 10
|
mpbid |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐼 ∈ Fin ) |
| 12 |
5 6 11
|
3jca |
⊢ ( 𝐺 ∈ FinUSGraph → ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ) |