Metamath Proof Explorer


Theorem fusgrfupgrfs

Description: A finite simple graph is a finite pseudograph of finite size. (Contributed by AV, 27-Dec-2021)

Ref Expression
Hypotheses fusgrfupgrfs.v V = Vtx G
fusgrfupgrfs.i I = iEdg G
Assertion fusgrfupgrfs G FinUSGraph G UPGraph V Fin I Fin

Proof

Step Hyp Ref Expression
1 fusgrfupgrfs.v V = Vtx G
2 fusgrfupgrfs.i I = iEdg G
3 fusgrusgr G FinUSGraph G USGraph
4 usgrupgr G USGraph G UPGraph
5 3 4 syl G FinUSGraph G UPGraph
6 1 fusgrvtxfi G FinUSGraph V Fin
7 fusgrfis G FinUSGraph Edg G Fin
8 eqid Edg G = Edg G
9 2 8 usgredgffibi G USGraph Edg G Fin I Fin
10 3 9 syl G FinUSGraph Edg G Fin I Fin
11 7 10 mpbid G FinUSGraph I Fin
12 5 6 11 3jca G FinUSGraph G UPGraph V Fin I Fin