Description: A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018) (Revised by AV, 8-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | fusgrfis | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | isfusgr | |
3 | usgrop | |
|
4 | fvex | |
|
5 | mptresid | |
|
6 | fvex | |
|
7 | 6 | mptrabex | |
8 | 5 7 | eqeltri | |
9 | eleq1 | |
|
10 | 9 | adantl | |
11 | eleq1 | |
|
12 | 11 | adantl | |
13 | vex | |
|
14 | vex | |
|
15 | 13 14 | opvtxfvi | |
16 | 15 | eqcomi | |
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 16 17 18 19 | usgrres1 | |
21 | eleq1 | |
|
22 | 21 | adantl | |
23 | 13 14 | pm3.2i | |
24 | fusgrfisbase | |
|
25 | 23 24 | mp3an1 | |
26 | simpl | |
|
27 | simprr1 | |
|
28 | eleq1 | |
|
29 | hashclb | |
|
30 | 29 | biimprd | |
31 | 30 | adantr | |
32 | 31 | com12 | |
33 | 28 32 | syl6bir | |
34 | 33 | 3ad2ant2 | |
35 | 34 | impcom | |
36 | 35 | impcom | |
37 | opfusgr | |
|
38 | 37 | adantr | |
39 | 27 36 38 | mpbir2and | |
40 | simprr3 | |
|
41 | 26 39 40 | 3jca | |
42 | 23 41 | mpan | |
43 | fusgrfisstep | |
|
44 | 42 43 | syl | |
45 | 44 | imp | |
46 | 4 8 10 12 20 22 25 45 | opfi1ind | |
47 | 3 46 | sylan | |
48 | eqid | |
|
49 | eqid | |
|
50 | 48 49 | usgredgffibi | |
51 | 50 | adantr | |
52 | 47 51 | mpbird | |
53 | 2 52 | sylbi | |