Metamath Proof Explorer


Theorem fusgrfis

Description: A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018) (Revised by AV, 8-Nov-2020)

Ref Expression
Assertion fusgrfis GFinUSGraphEdgGFin

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 isfusgr GFinUSGraphGUSGraphVtxGFin
3 usgrop GUSGraphVtxGiEdgGUSGraph
4 fvex iEdgGV
5 mptresid IpEdgve|np=qpEdgve|npq
6 fvex EdgveV
7 6 mptrabex qpEdgve|npqV
8 5 7 eqeltri IpEdgve|npV
9 eleq1 e=iEdgGeFiniEdgGFin
10 9 adantl v=VtxGe=iEdgGeFiniEdgGFin
11 eleq1 e=feFinfFin
12 11 adantl v=we=feFinfFin
13 vex vV
14 vex eV
15 13 14 opvtxfvi Vtxve=v
16 15 eqcomi v=Vtxve
17 eqid Edgve=Edgve
18 eqid pEdgve|np=pEdgve|np
19 eqid vnIpEdgve|np=vnIpEdgve|np
20 16 17 18 19 usgrres1 veUSGraphnvvnIpEdgve|npUSGraph
21 eleq1 f=IpEdgve|npfFinIpEdgve|npFin
22 21 adantl w=vnf=IpEdgve|npfFinIpEdgve|npFin
23 13 14 pm3.2i vVeV
24 fusgrfisbase vVeVveUSGraphv=0eFin
25 23 24 mp3an1 veUSGraphv=0eFin
26 simpl vVeVy+10veUSGraphv=y+1nvvVeV
27 simprr1 vVeVy+10veUSGraphv=y+1nvveUSGraph
28 eleq1 v=y+1v0y+10
29 hashclb vVvFinv0
30 29 biimprd vVv0vFin
31 30 adantr vVeVv0vFin
32 31 com12 v0vVeVvFin
33 28 32 syl6bir v=y+1y+10vVeVvFin
34 33 3ad2ant2 veUSGraphv=y+1nvy+10vVeVvFin
35 34 impcom y+10veUSGraphv=y+1nvvVeVvFin
36 35 impcom vVeVy+10veUSGraphv=y+1nvvFin
37 opfusgr vVeVveFinUSGraphveUSGraphvFin
38 37 adantr vVeVy+10veUSGraphv=y+1nvveFinUSGraphveUSGraphvFin
39 27 36 38 mpbir2and vVeVy+10veUSGraphv=y+1nvveFinUSGraph
40 simprr3 vVeVy+10veUSGraphv=y+1nvnv
41 26 39 40 3jca vVeVy+10veUSGraphv=y+1nvvVeVveFinUSGraphnv
42 23 41 mpan y+10veUSGraphv=y+1nvvVeVveFinUSGraphnv
43 fusgrfisstep vVeVveFinUSGraphnvIpEdgve|npFineFin
44 42 43 syl y+10veUSGraphv=y+1nvIpEdgve|npFineFin
45 44 imp y+10veUSGraphv=y+1nvIpEdgve|npFineFin
46 4 8 10 12 20 22 25 45 opfi1ind VtxGiEdgGUSGraphVtxGFiniEdgGFin
47 3 46 sylan GUSGraphVtxGFiniEdgGFin
48 eqid iEdgG=iEdgG
49 eqid EdgG=EdgG
50 48 49 usgredgffibi GUSGraphEdgGFiniEdgGFin
51 50 adantr GUSGraphVtxGFinEdgGFiniEdgGFin
52 47 51 mpbird GUSGraphVtxGFinEdgGFin
53 2 52 sylbi GFinUSGraphEdgGFin