Metamath Proof Explorer


Theorem fusgrfisstep

Description: Induction step in fusgrfis : In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 23-Oct-2020)

Ref Expression
Assertion fusgrfisstep VXEYVEFinUSGraphNVIpEdgVE|NpFinEFin

Proof

Step Hyp Ref Expression
1 residfi IpEdgVE|NpFinpEdgVE|NpFin
2 fusgrusgr VEFinUSGraphVEUSGraph
3 eqid iEdgVE=iEdgVE
4 eqid EdgVE=EdgVE
5 3 4 usgredgffibi VEUSGraphEdgVEFiniEdgVEFin
6 2 5 syl VEFinUSGraphEdgVEFiniEdgVEFin
7 6 3ad2ant2 VXEYVEFinUSGraphNVEdgVEFiniEdgVEFin
8 simp2 VXEYVEFinUSGraphNVVEFinUSGraph
9 opvtxfv VXEYVtxVE=V
10 9 eqcomd VXEYV=VtxVE
11 10 eleq2d VXEYNVNVtxVE
12 11 biimpa VXEYNVNVtxVE
13 eqid VtxVE=VtxVE
14 eqid pEdgVE|Np=pEdgVE|Np
15 13 4 14 usgrfilem VEFinUSGraphNVtxVEEdgVEFinpEdgVE|NpFin
16 8 12 15 3imp3i2an VXEYVEFinUSGraphNVEdgVEFinpEdgVE|NpFin
17 opiedgfv VXEYiEdgVE=E
18 17 eleq1d VXEYiEdgVEFinEFin
19 18 3ad2ant1 VXEYVEFinUSGraphNViEdgVEFinEFin
20 7 16 19 3bitr3rd VXEYVEFinUSGraphNVEFinpEdgVE|NpFin
21 20 biimprd VXEYVEFinUSGraphNVpEdgVE|NpFinEFin
22 1 21 biimtrid VXEYVEFinUSGraphNVIpEdgVE|NpFinEFin