| Step |
Hyp |
Ref |
Expression |
| 1 |
|
residfi |
⊢ ( ( I ↾ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ) ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin ) |
| 2 |
|
fusgrusgr |
⊢ ( 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph → 〈 𝑉 , 𝐸 〉 ∈ USGraph ) |
| 3 |
|
eqid |
⊢ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) |
| 4 |
|
eqid |
⊢ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) = ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) |
| 5 |
3 4
|
usgredgffibi |
⊢ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
| 6 |
2 5
|
syl |
⊢ ( 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
| 8 |
|
simp2 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ) |
| 9 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
| 10 |
9
|
eqcomd |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝑉 = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) |
| 11 |
10
|
eleq2d |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝑁 ∈ 𝑉 ↔ 𝑁 ∈ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) ) |
| 12 |
11
|
biimpa |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → 𝑁 ∈ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) |
| 13 |
|
eqid |
⊢ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) |
| 14 |
|
eqid |
⊢ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } = { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } |
| 15 |
13 4 14
|
usgrfilem |
⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin ) ) |
| 16 |
8 12 15
|
3imp3i2an |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin ) ) |
| 17 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
| 18 |
17
|
eleq1d |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ 𝐸 ∈ Fin ) ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ 𝐸 ∈ Fin ) ) |
| 20 |
7 16 19
|
3bitr3rd |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin ) ) |
| 21 |
20
|
biimprd |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin → 𝐸 ∈ Fin ) ) |
| 22 |
1 21
|
biimtrid |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( I ↾ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ) ∈ Fin → 𝐸 ∈ Fin ) ) |