Metamath Proof Explorer


Theorem fusgrfisbase

Description: Induction base for fusgrfis . Main work is done in uhgr0v0e . (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 23-Oct-2020)

Ref Expression
Assertion fusgrfisbase VXEYVEUSGraphV=0EFin

Proof

Step Hyp Ref Expression
1 usgruhgr VEUSGraphVEUHGraph
2 1 3ad2ant2 VXEYVEUSGraphV=0VEUHGraph
3 opvtxfv VXEYVtxVE=V
4 3 3ad2ant1 VXEYVEUSGraphV=0VtxVE=V
5 hasheq0 VXV=0V=
6 5 biimpd VXV=0V=
7 6 adantr VXEYV=0V=
8 7 a1d VXEYVEUSGraphV=0V=
9 8 3imp VXEYVEUSGraphV=0V=
10 4 9 eqtrd VXEYVEUSGraphV=0VtxVE=
11 eqid VtxVE=VtxVE
12 eqid EdgVE=EdgVE
13 11 12 uhgr0v0e VEUHGraphVtxVE=EdgVE=
14 2 10 13 syl2anc VXEYVEUSGraphV=0EdgVE=
15 0fin Fin
16 14 15 eqeltrdi VXEYVEUSGraphV=0EdgVEFin
17 eqid iEdgVE=iEdgVE
18 17 12 usgredgffibi VEUSGraphEdgVEFiniEdgVEFin
19 18 3ad2ant2 VXEYVEUSGraphV=0EdgVEFiniEdgVEFin
20 opiedgfv VXEYiEdgVE=E
21 20 3ad2ant1 VXEYVEUSGraphV=0iEdgVE=E
22 21 eleq1d VXEYVEUSGraphV=0iEdgVEFinEFin
23 19 22 bitrd VXEYVEUSGraphV=0EdgVEFinEFin
24 16 23 mpbid VXEYVEUSGraphV=0EFin