Step |
Hyp |
Ref |
Expression |
1 |
|
usgruhgr |
⊢ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph → 〈 𝑉 , 𝐸 〉 ∈ UHGraph ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → 〈 𝑉 , 𝐸 〉 ∈ UHGraph ) |
3 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
5 |
|
hasheq0 |
⊢ ( 𝑉 ∈ 𝑋 → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) ) |
6 |
5
|
biimpd |
⊢ ( 𝑉 ∈ 𝑋 → ( ( ♯ ‘ 𝑉 ) = 0 → 𝑉 = ∅ ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( ♯ ‘ 𝑉 ) = 0 → 𝑉 = ∅ ) ) |
8 |
7
|
a1d |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 〈 𝑉 , 𝐸 〉 ∈ USGraph → ( ( ♯ ‘ 𝑉 ) = 0 → 𝑉 = ∅ ) ) ) |
9 |
8
|
3imp |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → 𝑉 = ∅ ) |
10 |
4 9
|
eqtrd |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ∅ ) |
11 |
|
eqid |
⊢ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) |
12 |
|
eqid |
⊢ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) = ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) |
13 |
11 12
|
uhgr0v0e |
⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ UHGraph ∧ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ∅ ) → ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) = ∅ ) |
14 |
2 10 13
|
syl2anc |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) = ∅ ) |
15 |
|
0fin |
⊢ ∅ ∈ Fin |
16 |
14 15
|
eqeltrdi |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) |
17 |
|
eqid |
⊢ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) |
18 |
17 12
|
usgredgffibi |
⊢ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
20 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
22 |
21
|
eleq1d |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ 𝐸 ∈ Fin ) ) |
23 |
19 22
|
bitrd |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ 𝐸 ∈ Fin ) ) |
24 |
16 23
|
mpbid |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 0 ) → 𝐸 ∈ Fin ) |