Metamath Proof Explorer


Theorem usgrop

Description: A simple graph represented by an ordered pair. (Contributed by AV, 23-Oct-2020) (Proof shortened by AV, 30-Nov-2020)

Ref Expression
Assertion usgrop GUSGraphVtxGiEdgGUSGraph

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 usgrfs GUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
4 fvex VtxGV
5 fvex iEdgGV
6 4 5 pm3.2i VtxGViEdgGV
7 isusgrop VtxGViEdgGVVtxGiEdgGUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
8 6 7 mp1i GUSGraphVtxGiEdgGUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
9 3 8 mpbird GUSGraphVtxGiEdgGUSGraph