Metamath Proof Explorer


Theorem usgrop

Description: A simple graph represented by an ordered pair. (Contributed by AV, 23-Oct-2020) (Proof shortened by AV, 30-Nov-2020)

Ref Expression
Assertion usgrop G USGraph Vtx G iEdg G USGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 usgrfs G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
4 fvex Vtx G V
5 fvex iEdg G V
6 4 5 pm3.2i Vtx G V iEdg G V
7 isusgrop Vtx G V iEdg G V Vtx G iEdg G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
8 6 7 mp1i G USGraph Vtx G iEdg G USGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
9 3 8 mpbird G USGraph Vtx G iEdg G USGraph