Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
3 |
1 2
|
usgrfs |
|- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
4 |
|
fvex |
|- ( Vtx ` G ) e. _V |
5 |
|
fvex |
|- ( iEdg ` G ) e. _V |
6 |
4 5
|
pm3.2i |
|- ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) |
7 |
|
isusgrop |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
8 |
6 7
|
mp1i |
|- ( G e. USGraph -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
9 |
3 8
|
mpbird |
|- ( G e. USGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. USGraph ) |