Step |
Hyp |
Ref |
Expression |
1 |
|
ausgr.1 |
|- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
2 |
|
simpr |
|- ( ( v = V /\ e = E ) -> e = E ) |
3 |
|
pweq |
|- ( v = V -> ~P v = ~P V ) |
4 |
3
|
adantr |
|- ( ( v = V /\ e = E ) -> ~P v = ~P V ) |
5 |
4
|
rabeqdv |
|- ( ( v = V /\ e = E ) -> { x e. ~P v | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } ) |
6 |
2 5
|
sseq12d |
|- ( ( v = V /\ e = E ) -> ( e C_ { x e. ~P v | ( # ` x ) = 2 } <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
7 |
6 1
|
brabga |
|- ( ( V e. W /\ E e. X ) -> ( V G E <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |