Metamath Proof Explorer


Theorem isausgr

Description: The property of an unordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017)

Ref Expression
Hypothesis ausgr.1 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } }
Assertion isausgr ( ( 𝑉𝑊𝐸𝑋 ) → ( 𝑉 𝐺 𝐸𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )

Proof

Step Hyp Ref Expression
1 ausgr.1 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } }
2 simpr ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → 𝑒 = 𝐸 )
3 pweq ( 𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉 )
4 3 adantr ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → 𝒫 𝑣 = 𝒫 𝑉 )
5 4 rabeqdv ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
6 2 5 sseq12d ( ( 𝑣 = 𝑉𝑒 = 𝐸 ) → ( 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
7 6 1 brabga ( ( 𝑉𝑊𝐸𝑋 ) → ( 𝑉 𝐺 𝐸𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )