| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ausgr.1 | ⊢ 𝐺  =  { 〈 𝑣 ,  𝑒 〉  ∣  𝑒  ⊆  { 𝑥  ∈  𝒫  𝑣  ∣  ( ♯ ‘ 𝑥 )  =  2 } } | 
						
							| 2 | 1 | isausgr | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( 𝑉 𝐺 𝐸  ↔  𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 3 |  | f1oi | ⊢ (  I   ↾  𝐸 ) : 𝐸 –1-1-onto→ 𝐸 | 
						
							| 4 |  | dff1o5 | ⊢ ( (  I   ↾  𝐸 ) : 𝐸 –1-1-onto→ 𝐸  ↔  ( (  I   ↾  𝐸 ) : 𝐸 –1-1→ 𝐸  ∧  ran  (  I   ↾  𝐸 )  =  𝐸 ) ) | 
						
							| 5 |  | f1ss | ⊢ ( ( (  I   ↾  𝐸 ) : 𝐸 –1-1→ 𝐸  ∧  𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } )  →  (  I   ↾  𝐸 ) : 𝐸 –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 6 |  | dmresi | ⊢ dom  (  I   ↾  𝐸 )  =  𝐸 | 
						
							| 7 | 6 | eqcomi | ⊢ 𝐸  =  dom  (  I   ↾  𝐸 ) | 
						
							| 8 |  | f1eq2 | ⊢ ( 𝐸  =  dom  (  I   ↾  𝐸 )  →  ( (  I   ↾  𝐸 ) : 𝐸 –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( (  I   ↾  𝐸 ) : 𝐸 –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 10 | 5 9 | sylib | ⊢ ( ( (  I   ↾  𝐸 ) : 𝐸 –1-1→ 𝐸  ∧  𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } )  →  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 11 | 10 | ex | ⊢ ( (  I   ↾  𝐸 ) : 𝐸 –1-1→ 𝐸  →  ( 𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 12 | 11 | a1d | ⊢ ( (  I   ↾  𝐸 ) : 𝐸 –1-1→ 𝐸  →  ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( 𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( (  I   ↾  𝐸 ) : 𝐸 –1-1→ 𝐸  ∧  ran  (  I   ↾  𝐸 )  =  𝐸 )  →  ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( 𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) ) | 
						
							| 14 | 4 13 | sylbi | ⊢ ( (  I   ↾  𝐸 ) : 𝐸 –1-1-onto→ 𝐸  →  ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( 𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) ) | 
						
							| 15 | 3 14 | ax-mp | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( 𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 16 |  | df-f | ⊢ ( (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  ( (  I   ↾  𝐸 )  Fn  dom  (  I   ↾  𝐸 )  ∧  ran  (  I   ↾  𝐸 )  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 17 |  | rnresi | ⊢ ran  (  I   ↾  𝐸 )  =  𝐸 | 
						
							| 18 | 17 | sseq1i | ⊢ ( ran  (  I   ↾  𝐸 )  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 19 | 18 | biimpi | ⊢ ( ran  (  I   ↾  𝐸 )  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 20 | 19 | a1d | ⊢ ( ran  (  I   ↾  𝐸 )  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 21 | 16 20 | simplbiim | ⊢ ( (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 22 |  | f1f | ⊢ ( (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 23 | 21 22 | syl11 | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 24 | 15 23 | impbid | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( 𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 25 |  | resiexg | ⊢ ( 𝐸  ∈  𝑌  →  (  I   ↾  𝐸 )  ∈  V ) | 
						
							| 26 |  | opiedgfv | ⊢ ( ( 𝑉  ∈  𝑋  ∧  (  I   ↾  𝐸 )  ∈  V )  →  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  =  (  I   ↾  𝐸 ) ) | 
						
							| 27 | 25 26 | sylan2 | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  =  (  I   ↾  𝐸 ) ) | 
						
							| 28 | 27 | dmeqd | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  dom  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  =  dom  (  I   ↾  𝐸 ) ) | 
						
							| 29 |  | opvtxfv | ⊢ ( ( 𝑉  ∈  𝑋  ∧  (  I   ↾  𝐸 )  ∈  V )  →  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  =  𝑉 ) | 
						
							| 30 | 25 29 | sylan2 | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  =  𝑉 ) | 
						
							| 31 | 30 | pweqd | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  𝒫  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  =  𝒫  𝑉 ) | 
						
							| 32 | 31 | rabeqdv | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  { 𝑥  ∈  𝒫  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  =  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 33 | 27 28 32 | f1eq123d | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) : dom  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) –1-1→ { 𝑥  ∈  𝒫  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  (  I   ↾  𝐸 ) : dom  (  I   ↾  𝐸 ) –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 34 | 24 33 | bitr4d | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( 𝐸  ⊆  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) : dom  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) –1-1→ { 𝑥  ∈  𝒫  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 35 |  | opex | ⊢ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉  ∈  V | 
						
							| 36 |  | eqid | ⊢ ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  =  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) | 
						
							| 37 |  | eqid | ⊢ ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  =  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) | 
						
							| 38 | 36 37 | isusgrs | ⊢ ( 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉  ∈  V  →  ( 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉  ∈  USGraph  ↔  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) : dom  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) –1-1→ { 𝑥  ∈  𝒫  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 39 | 35 38 | ax-mp | ⊢ ( 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉  ∈  USGraph  ↔  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) : dom  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) –1-1→ { 𝑥  ∈  𝒫  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 40 | 39 | bicomi | ⊢ ( ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) : dom  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) –1-1→ { 𝑥  ∈  𝒫  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  〈 𝑉 ,  (  I   ↾  𝐸 ) 〉  ∈  USGraph ) | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) : dom  ( iEdg ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 ) –1-1→ { 𝑥  ∈  𝒫  ( Vtx ‘ 〈 𝑉 ,  (  I   ↾  𝐸 ) 〉 )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  〈 𝑉 ,  (  I   ↾  𝐸 ) 〉  ∈  USGraph ) ) | 
						
							| 42 | 2 34 41 | 3bitrd | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝐸  ∈  𝑌 )  →  ( 𝑉 𝐺 𝐸  ↔  〈 𝑉 ,  (  I   ↾  𝐸 ) 〉  ∈  USGraph ) ) |